Climate Change Impacts on Evapotranspiration

Roy Peterson Richard Snyder Morteza Orang

Sustenance and Water

One Liter of Water Produces One Calorie of Food*

*"Comparative Assessment" by the Consultative Group of International Agricultural Research

Evapotranspiration (ET) In a Climate Changed CA Landscape

How is ET impacted in a future world?

Are there solutions for changes in water demand resulting from ET?

Are trends emerging that worsen risks from ET demand?

Presentation Plan

ET Demand in CA

ET Mechanism Analysis

Integrative Plant Biology

Energy Budget

Simulated ET for Climate Change

Future CA Ag Landscape

Solutions and Risks

Evapotranspiration

Evaporation (E): loss of water vapor to the atmosphere via phase change from liquid water

Transpiration (T): liquid water phase change occurring inside plants with the vapor diffusing to the atmosphere

ET is the largest consumptive use of DWR water (about 80% in a normal water year), excluding water quality maintenance and environmental needs

CA Agricultural

Land of milk and honey

\$31 billion as income (2004)

Highest agricultural crop value in the USA for over 50 consecutive years

Half of the fruits, nuts and vegetables in the USA

28 million acres in some type of agricultural production (1997)

Mild, Sunny climate; deep rich soils; Infrastructure (water, transport, labor)

NASS 2006; CADFA 2006

ET of Applied Water in normal water year

Commodity	ETaw (acre-in/acre)
Safflower	9.5
Vineyards	17.3
Processing Tomatoes	24.4
Almonds Pistachios	33.1
Alfalfa	42.7

Relation of Transpiration and Photosynthesis

Water Use Efficiency & CO₂ Increase

Water Use Efficiency = Assimilation/Transpiration

Assimilation (carbon fixation) is related to plant N

The most abundant protein on earth, Rubisco, is limiting step in C₃ photosynthesis

Increased interstitial CO₂ reduces Rubisco inefficiency

At higher CO₂ partial stomatal closure decreases transpiration

Increased leaf temperature increases transpiration

Effects of Increased CO₂ on Plant Production

CO₂ Experiments

Growth Chamber

Field Chamber

FACE

Long et al Sci 2006

Penman-Monteith

Energy Budget Changes With Increased Temperature and CO₂

Weighting to Available Energy Increases

Weighting to Sensible Energy Decreases

Solar Radiation More Important

Vapor Deficit Pressure and Wind Less Important

Change in Latent Energy
Depends Most Strongly on Solar
Radiation Change

S = solar input

L = longwave radiation

rs = reflected solar

R = reradiated solar

H = sensible heat transfer

E = latent heat transfer

A = assimilation

Reference ET at Davis CA

Simulated ET at Three Canopy Resistances

ET Simulations Using Different Climate Change Impacts

Water Saving In ET

Plant Breading Advancement

WUE Increased 40% in past 35 years for Processing Tomatoes

Irrigation Improvement

Management (CIMIS)

Changes In Type

California Irrigation Trends

Irrigation method	1990 Acreage	%	2000 Acreage	%	% change
Gravity (furrow, flood)	6.5	67.5	4.9	51.3	-16.2
Sprinkler	2.3	23.8	2.8	28.8	5
Drip/micro	0.8	8.7	1.9	19.9	11.2

Acreage in million acres

Conclusions

Evapotranspiration (ET) in California is a Predominant Water Demand

Climate Change Slightly Increases ET

CO₂ Increase Diminishes the ET Increase Resulting from Temperature Increase

A Current Trend Toward Perennial Woody Crops Increases Risk from Possible Droughts

Future Directions for Study of ET Impacts from Climate Change

Refinement of CO₂ influences on transpiration

Evaporation from open water bodies with climate change

SEMETAW program integration with other modeling tools

Stable isotope measures for WUE

Land use change and ET

