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INTRODUCTION. Northeastern Bangladesh 
(NEB; 90.5°–92.5°E, 24°–25.5°N) has unique low-
land areas known as haors. The “Boro” paddy (rice) 
crop is cultivated in these haors in dry winter sea-
son (December–February) and harvested during 
April–May. Boro accounted for ~55% of national 
rice production per annum during 2011–16 and NEB 
contributed to ~15% of the total Boro rice production 
over this period (FAO 2017). NEB receives highest 
annual mean rainfall of >4,300 mm, in contrast 
to western Bangladesh, which receives 1,400 mm 
(Shahid 2010). Topographic uplifting of the south-
westerly f low by the Meghalaya Plateau and other 
surrounding mountains triggers heavy convective 
rainfall at NEB in the pre-monsoon season (Murata 
et al. 2008, 2011; Sanderson and Ahmed 1979; Shahid 
2010). Pre-monsoon rainfall during March–April 
facilitates growth of Boro but events >150 mm of 
total 6-day rainfall can cause early flash floods and 
damage crops. On 27 March 2017, extreme rainfall 
over NEB triggered the earliest f lash f lood since 
2000 (Ahmed et al. 2017). Subsequently, ~850,000 
households were affected and ~220,000 ha of nearly 
harvestable Boro were damaged. Crop failure in 2017 
contributed to a record 30% rice price hike compared 

to 2016 (FAO 2017). Analyzing NOAA’s Climate 
Prediction Center (CPC) observation data, we find 
that during 16 March–15 April 2017, 6-day total 
rainfall over NEB amounted to 225 mm (i.e., 33.33% 
higher than the flash flood triggering threshold of 
150 mm). The highest positive rainfall anomaly (up 
to 100 mm day–1; relative to 1979–2017) during 16 
March–15 April 2017 is found at NEB (see red box in 
Fig. 1a). To determine how rare this event is, we apply 
a generalized Pareto (GP) distribution fit to CPC data 
exceeding 90th percentile values, and find a return 
time of ~70 years (Fig. 1d).

Most of the attribution studies are done for mid-
latitude extreme events of the developed countries 
while very few of them focus on the tropical region 
(Marthews et al. 2015; Otto et al. 2015; Otto 2017) or 
developing countries, even though these countries 
experience extreme events and have the least capacity 
to adapt with the consequent impacts (IPCC 2013).

To understand the drivers behind the 2017 floods, 
here we investigate the probabilities of extreme 6-day 
rainfall during pre-monsoon season in Bangladesh 
and analyze whether or not anthropogenic climate 
change has changed the odds of such events occurring 
(Allen 1999). We utilize the very large weather@home 
regional climate model (RCM) ensemble based on 
HadRM3P. We also investigate the potential contribu-
tion of radiative cooling from anthropogenic aerosols 
as their presence can counterbalance the greenhouse 
gas (GHG) induced intensification of the hydrologi-
cal cycle (Li et al. 2016). Niño-3.4 and Indian Ocean 
dipole (IOD) indices are used to quantify the role of 
two key climate modes. Additionally, two global cli-
mate models (GCMs) of MIROC5 and ETH_CAM4 
are used to test the robustness of our results.

DATA AND METHODS. We use daily rainfall 
data from Asian Precipitation Highly Resolved Ob-
servational Data Integration toward Evaluation of 
Water Resources (APHRODITE) covering 1979–2007 
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(Yatagai et al. 2012), CPC global 0.5° analysis of daily 
rain gauge measurements covering 1979–2017 (Chen 
et al. 2008), and Global Rainfall Climatology Cen-
tre (GPCC) daily rainfall data covering 1988–2017 
(Schamm et al. 2015). The higher-resolution (50 km) 
weather@home HadRM3P RCM is nested in the 
global atmosphere-only HadAM3P model [an atmo-
spheric general circulation model (AGCM)] and is 
driven by prescribed SSTs and sea ice concentration 
(SIC) (Massey et al. 2015; Guillod et al. 2017) and 
radiative forcing. Following Schaller et al. (2016), we 
use 75,000 (30 × 2500) simulations for “Actual March 
2017” under factual conditions with observed 2017 
GHG concentrations, OSTIA SSTs, and SIC (Donlon 
et al. 2012) and 15,7500 (30 × 5250) simulations for 
“Natural March 2017” under conditions that might 
have been in a counterfactual world without past 
GHG emissions and other pollutants. We also use 
2,160,000 (360 × 30 × 200) simulations for each of 
the Actual, Natural, and GHG-only climatology over 
the 30 years (1986–2015) of reference period. Here the 
GHG-only scenario has current levels of GHGs but 
the anthropogenic aerosols are set to pre-industrial 

levels. In addition, we use smaller ensembles from 
two GCMs, with 1500 (30 × 50) simulations from 
MIROC5 and 15,000 (30 × 500) simulations from 
ETH_CAM4 representing Actual and Natural March 
during a 10-yr (2006–15) period [see Mitchell et al. 
(2017) for more details]. All model and observa-
tion data are regridded using bilinear interpolation 
method and then area-averaged rainfall statistics over 
NEB are analyzed. We use the Niño-3.4 index (Rayner 
et al. 2003) to determine the lagged correlation with 
March rainfall over NEB, and with the IOD index 
(Huang et al. 2017).

We quantified the change in the occurrence 
probability of rainfall event, the risk ratio (RR), as 
RR = Pf/Pcf,, where the probability of the event in the 
factual climate is denoted by Pf and the probability 
of the same event in a counterfactual climate without 
anthropogenic climate change is denoted by Pcf (NAS 
2016). An exception to this is the GHG-only scenario, 
where RR is calculated using Pcf = actual climate 
instead of natural climate.

As far as the HadRM3P’s performance with regard 
to APHRODITE, GPCC, and CPC is concerned, the 

Fig. 1. (a) Spatial distribution of CPC rainfall (mm day–1) over Bangladesh during 16 March–15 April 2017 relative to 
climatology (1979–2017). The red box indicates the study area of NEB. (b) Niño-3.4 (November–January) and 
IOD (February–April) indices during 1979–2017. The horizontal dashed black line in (c) indicates the threshold 
value for heaviest rainfall events. The vertical dashed black rectangles in (b) and (c) indicate the association 
between the heaviest rainfall events and IOD (Niño-3.4). (d) Return level plot of GP distribution fitted to CPC 
observed extreme 6-day rainfall events exceeding a 90th percentile threshold. (e)–(g) Annual cycles of 6-day 
rainfall over NEB as in models and observations (HadRM3P, ETH_CAM4 and MIROC5, respectively), with CPC 
(1979–2017 and 2004–16), GPCC (1988–2017), and APHRODITE (1979–2007).
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model reproduces the annual rainfall cycle with sat-
isfactory agreement. However, monsoon rainfall is 
underestimated in HadRM3P by ~30% (Fig. 1e) with 
an early onset. We are using model data for March 
rather than mid-March to mid-April to remove this 
bias. MIROC5 is biased dry (Fig. 1g) in March (~50%), 
whereas ETH-CAM4 (Fig. 1f) is biased extremely 
dry (~40% in March and ~25%–50% throughout the 
monsoon season).

RESULTS AND DISCUSSION. Figure 2 il-
lustrates how the return periods of March extreme 
6-day rainfall events have changed from natural 
counterfactual climate to actual climate scenarios. 
The likelihood of extreme 6-day rainfall event un-
der 2017 SST conditions in March has increased by 
~20% (Fig. 2a) in HadRM3P compared to natural 
conditions. We find RR of ~2 (100% increase) for 
the 1986–2015 climatology period (Fig. 2a), but 
then unaltered risks for the shorter 2006–15 period 
(for events < 200 mm; Fig. 2b). This suggests that 
there are interesting nonlinear dynamic feedbacks 
at play, which depend on the state of the climate 
(i.e., ENSO or IOD variability). For March and the 
preceding winter (DJF 2016/17), very weak La Niña 
conditions were present (see Fig. ES2c in the on-
line supplemental material). While not conclusive, 
HadRM3P results indicate that La Niña made drier 

conditions more likely over NEB (Fig. ES1c). Such 
feedback arises from global teleconnections, which 
can be detected in the upper-level zonal wind anoma-
ly fields, in HadRM3P and reanalysis (not shown). In 
general, we find a moderate correlation (r = 0.4 to 0.6; 
no lag) between Niño-3.4 and NEB rainfall in March 
(Fig. ES2g). Regarding the interplay between ENSO 
and IOD itself, we argue that ENSO leads most IOD 
changes as notable particularly during strong El Niño 
events (Figs. 1b,c) because correlation between Niño-
3.4 during November to January and IOD during 
February and March (r = 0.467; 4 months’ lead time; p 
= 0.0081 at 95% confidence level) is significant. While 
positive IOD events tend to weaken the El Niño im-
pact on the rainfall (e.g., Behera and Ratnam 2018), 
we obtain mixed results for the five heavy rainfall 
events (vertical dashed rectangles through Figs. 1b 
and 1c) exceeding the 150-mm threshold. Only two 
out of five events were associated with positive IOD 
and El Niño conditions. March 2017 is drier not only 
from an ENSO but also from an IOD point of view. 
Since March is in the beginning of the pre-monsoon 
season, small changes can cause drastically different 
outcomes. Matsumoto (1997) and Ashfaq et al. (2009) 
identified an early onset of the rainy days at NEB on 
8 April and 21 May, respectively. We speculate that 
the current warming has shifted the pre-monsoon 
heavy rain’s onset to even an earlier start. We notice 

Fig. 2. Return periods for 6-day rainfall events in March over NEB showing (a) HadRM3P Actual 2017 (black) 
and Natural 2017 (dark green) vs Actual climatology 1986–2015 (gray) and Natural climatology 1986–2015 
(light green) ensembles. (b) Actual climatology 2006–15 (gray), Natural climatology 2006–15 (light green), 
and GHG-only climatology 2006–15 (yellow). (c) Actual climatology 2006–15 (gray) and Natural climatology 
2006–15 (light green) but as in MIROC5 (squares) and ETH_CAM4 (triangles) model ensembles. Each dot, 
triangle, or square represents one simulation of the HadRM3P, MIROC5, or ETH_CAM4 model, respectively, 
and the shaded polygon shows 95% confidence intervals. The horizontal dashed deep brown line in each panel 
indicates the extreme event of March 2017.
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a decreasing risk for the extreme rainfall event of 
March 2017 (225 mm) from Natural to Actual cli-
mate but then an increasing risk from natural to 
GHG-only climate conditions during 2006–15. This 
result demonstrates a considerable contribution of 
the anthropogenic aerosols for March 2006–15 (Fig. 
2b); however, this is not the same for 1986–2015 (not 
shown). MIROC5 and ETH_CAM4 simulate much 
smaller changes in risk, with ETH_CAM4 even 
suggesting a drying trend, but none of these GCMs 
captured the observed extreme event of 2017 (Fig. 2c).

CONCLUSIONS. Based on the results from 
HadRM3P model only (for 1986–2015), we conclude 
that anthropogenic climate change doubled the likeli-
hood of extreme pre-monsoon rainfall (~100% more 
likely) over NEB. Interestingly, the attribution signal 
in March is sensitive to the chosen climatology period. 
Natural ENSO and IOD variability influence interan-
nual changes in rainfall risks, yet both indices made 
the 2017 rainfall event less likely. The anthropogenic 
aerosol cooling effect is noticeably observed during the 
recent decade (2006–15). How the interplay between 
the two competing forces of GHGs and the anthropo-
genic aerosols influences the risks of extreme rainfall 
events should be explored more. For the first time, this 
study presents attribution assessment for pre-monsoon 
extreme rainfall event for Bangladesh. Understanding 
the physical mechanisms behind such event and using 
a multimodel approach to incorporate associated un-
certainties can be useful for further studies.
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