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Validation of Wind Power Plant Dynamic Models  

Eduard Muljadi1, Senior Member, IEEE                           A. Ellis2 Senior Member, IEEE          

  Abstract – Wind energy will continue to grow at a rapid pace 
and will provide an increasingly large portion of the total 
electricity generation. To achieve its full potential, the industry 
needs adequate wind-turbine generator (WTG) dynamic models 
to determine the impact of adding wind generation, and establish 
how the system needs to be upgraded. 
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For the most part, WTG manufacturers have sponsored the 
development of WTG dynamic models.  Models developed under 
this paradigm tend to be proprietary and mamufacturer-specific. 
The models are often disclosed under confidential terms for 
interconnection studies and design of individual projects.  
However, the use of proprietary models to represent installed 
wind power plants is incompatible with critical grid planning 
activities that are conducted by regional reliability organizations 
as a collaborative effort among many stakeholders.  In this 
context, the use of generic or simplified models is desirable.  

 Figure 1a. Simplified single-line diagram of a wind power plant To address this industry need, the Western Electricity 
Coordinating Council (WECC) has embarked on the development 
of generic positive sequence WTG models for large-scale power 
system transient stability analysis.  As an integral part of this 
WECC activity, the National Renewable Energy Laboratory 
(NREL) is engaged in a model validation effort.  This paper 
discusses the process of model validation against field 
measurements. The procedure is illustrated with a specific 
example.   

 

 
Index Terms — dynamic model, power system, renewable 

energy, variable-speed generation, weak grid, wind energy, wind 
farm, wind power plant, wind turbine, wind integration, systems 
integration, WECC, wind turbine model, validation.  

I.  INTRODUCTION 

Modern wind turbine generators (WTGs) utilize power 

electronics and state-of-the-art real and reactive power 
controls that allow wind power plants to have much better 
steady-state and dynamic performance compared to wind 
power plants of the past.  For reliability and cost reasons, it is 
very important to properly represent steady and dynamic 
characteristics in large-scale positive-sequence simulations. 
For the most part, the development of WTG positive-sequence 
dynamic models has been sponsored by WTG manufacturers. 
Simulation models developed under this paradigm tend to be 
proprietary and manufacturer-specific.  The models are often 
disclosed under confidential terms for interconnection studies 
and design of individual projects.  However, the use of 

                                                           
We acknowledge the financial support provided by the U.S. Department 

of Energy, California Energy Commission, and Western Electric Coordinating 
Council.  

1E. Muljadi is with National Renewable Energy Laboratory, Golden, CO 
80401 (email: eduard_muljadi@nrel.gov). 

2A. Ellis is with Public Service Company of New Mexico, Albuquerque, 
NM 87158 (e-mail: aellis@pnm.com). 

 

proprietary and manufacturer-specific models to represent 
installed wind power plants is incompatible with critical grid 
planning activities that are conducted by regional reliability 
organizations as a collaborative effort among many 
stakeholders.  In this context, the use of generic or simplified 
models is desirable.  

To address this industry need, the Wind Generation 
Modeling Group (WGMG) of the Western Electricity 
Coordinating Council (WECC) has embarked on the 
development of generic positive sequence WTG models for 
large-scale power system transient stability analysis.  This 
effort is based on the premise that it technically feasible to 
develop a generic model for each of the four basic WTG 
configurations that are currently in use: squirrel-cage induction 
generator, wound-rotor induction generator with adjustable 
rotor resistance, doubly fed asynchronous generator (DFAG), 
and a full-power conversion wind turbine generator.  Although 
additional work is required to achieve the stated goals, 
substantial progress has been made.  As an integral part of this 
WCC WGMG activity, the National Renewable Energy 
Laboratory (NREL) is engaged in an extensive model 
validation project aimed at testing the models against field 
measurements and refining the WECC generic models as 
needed.      

 Figure 1a, shows a simplified single-line diagram of a wind 
power plant.  It is possible to capture the essential powerflow 
and dynamic behavior of the wind power plant using a single-
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Figure 1b.  Single-machine equivalent representation. 

1 

mailto:eduard_muljadi@nrel.gov
mailto:aellis@pnm.com


 

machine equivalent representation (Figure 1b.).  For practical 
reasons, the single-machine equivalent representation is the 
preferred way to represent wind power plants in large-scale 
power system simulations.  A method of representing groups of 
wind turbines by their equivalent is described in [1].  In some 
cases, where the wind power plant consists of different types of 
WTGs or has significantly distinct clusters, it may be 
appropriate to represent the wind power plant with two or more 
equivalent generators [2]. There are many other references 
available for readers interested in dynamic models of wind 
turbines and wind power plants [3-5].  

This paper is organized as follows.  Section I is devoted to 
the introduction.  Section II describes an actual wind power plant 
used throughout the paper as an example.  The corresponding 
single-machine equivalent representation is discussed.  Section 
III discusses the general model validation methodology.  
Simulation and comparison between simulated data and the 
recorded data is presented in Section IV.   And finally, some 
concluding remarks are offered in Section V. 

II.  EXAMPLE WIND POWER PLANT 
Although the method described is generic in nature, a 

specific wind power plant will be used as an illustration.  The 
reference wind power plant has a nameplate rating of 204 MW 
and consists of 136 1.5-MW DFAG WTGs.  It is connected 
the transmission system operated by Public Service Company 
of New Mexico (PNM) at 345 kV. There are a total of eight 
34.5 kV-feeders, two of them are overhead and the rest are 
underground.  The collector system station is adjacent to the 
transmission station.  The wind power plant is equipped with a 
voltage regulator that controls voltage at the transmission 
station, relying on the reactive capability of the WTGs only.  
There is no additional reactive compensation within the wind 
power plant. 

The single-machine equivalent representation of the 
reference wind power plant is shown in Figure 2. All 
impedances are in a 100-MVA base. The derivation of 
equivalent impedances is explained in more detail in [1].  The 
station transformer was modeled explicitly. Node A represents 
the transmission station or POI.  Node B is the generator 
terminal. Note that C represents the 34.5-kV collector system 
station. 
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Figure 2. Single-machine equivalent representation for reference wind power 
plant. 
 

It is important to understand that the impedance between 
the terminals of each WTG and the transmission station is 
different; therefore, the terminal behavior during a major 

system disturbance would differ. During a major disturbance, 
it is possible for a portion of the WTGs to experience voltages 
beyond control or protection limits.  It is not possible to 
capture these differences with the single-machine equivalent 
representation.  The equivalent WTG is meant to represent the 
aggregate terminal behavior of the “average” WTG in the wind 
power plant.  

In this case, we are interested in checking the performance 
of the WECC generic DFAG model [6].  This model has been 
implemented as standard library models in two positive-
sequence simulation programs commonly used in the U.S. A 
high-level block diagram of the model is shown in Figure 3. 
Since the goal is to illustrate the model validation process, the 
specific model structure and parameters are not of primary 
interest in this paper.  Default model parameters were used.  
Additional information about the model can be found in [6] 
and [7].   

 

 
 

Figure 3.  Block diagram of WECC generic DFAG model. 
 

The goal is to compare the output of the model against 
actual measurements captured at the transmission station, 
where disturbance recordings can be obtained relatively easily. 
The disturbance used as an example in this paper consists of a 
line-to-ground fault in the vicinity of the transmission station, 
which resulted in a voltage transient large enough to excite a 
significant dynamic response from the wind power plant, 
within the design response capability of the generic model (up 
to about 5 Hz).  Data before the fault occurred is required to 
establish the pre-disturbance powerflow conditions that are 
used to initialize the model.  The disturbance record should 
extend several seconds after the contingency, consistent with 
the time frame of interest of positive-sequence transient 
stability analysis. 

III.  METHOD OF ANALYSIS 

A.  Transmission system and disturbance representation 
It can be difficult to represent the power system network to 

properly simulate a remote fault.  In addition, the nature of the 
fault in most cases is difficult to characterize.  Fortunately, 
there is a simpler method that uses data captured at the point of 
interconnection to drive a dynamic simulation.  During the 
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dynamic simulation, the measured positive-sequence voltage 
and frequency boundary conditions can be imposed at the 
transmission station POI.   This technique has been in use in 
WECC for some time, and is achieved with the aid of a 
modified classical generator model (GENCLS) capable of 
holding terminal voltage and frequency as specified in an input 
file. This “system generator” is connected at node A in Figure 
4, and must be defined as the slack bus in the simulation.  A 
direct comparison between the simulated and measured real 
and reactive power at the POI can provide some evidence of 
model performance.  It should be kept in mind that some 
aspects of the model may not be exercised by the disturbance. 
Therefore, validation requires multiple tests across different 
system conditions and different wind power plants of the same 
type of generators.  

 
 
 
 
 
 
 

 
 
 

Figure 4. Validation technique used in this paper. 
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B.  Raw data preparation 
In this section, an example of data preparation is presented. 

As pointed out earlier, disturbance data was measured at the 
POI.  A window of observation is set up by using a data fault 
recorder that will capture the entire fault event (a few seconds 
before, during, and after the fault event).  The data recorded 
are the three-phase voltage and currents at a sampling rate of 
3486 Hz. 

An example of the per-phase voltage waveform is shown in 
Figure 5a. The time series of the voltage presented in Figure 
5a is shown in a “stationary reference frame.”    To integrate 
this information in a positive-sequence simulation, we need to 
have the positive-sequence magnitude of the voltage, 
frequency, as well as the real and reactive power magnitude as 
a function of time.  Most station instrumentation software tools 
have the capability to make the conversion easily.  However, 
the procedure is not difficult.    First, we convert the voltages 
and currents from a, b, c representation into a d-q axis 
representation in stationary reference frame.  The equation 
used to perform this transformation is presented in equation 
[1].  

 
From a stationary reference frame, we convert these 

variables into its representation in synchronous reference 

frame by using equation [2].  
 
 
 
  
 
 
 

2 2

1atan

qde qe de qde
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qde
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V
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⎛ ⎞
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⎝ ⎠  
In this case the variable f can be substituted with v for 

voltage or i for current. The subscript s represents the 
stationary reference frame and the subscript e represents the 
synchronous reference frame.  Under normal condition, the 
quantities in the synchronous reference frame will show 
constant values in the d and q axis.  Finally, we can convert the 
voltage or current into its phasor form as shown in equation 
(3).  Thus, we convert the voltages and currents from a three-
phase a, b, and c representation into its magnitude and phase 
angle (in phasor form) to follow the progression of the fault 
and to show how the voltage phasor changes during the fault.  
The methods described in this section can be found in more 
detail in [8].  

The frequency change at each step can be derived from the 
phase angle changes in each time step by using equation 4:  
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Instantaneous real and reactive power can be computed 

from the measured voltages and currents with the following 
equations: 

( )

( )qededeqe

dedeqeqe

iviv
2
3  q 

iviv
2
3  p 

−=

+=
 [5] 

The lower case indicates that these quantities are instantaneous 
values.   

The traces shown in Figure 5b are the voltage phasor 
quantities (magnitude and phase angle) obtained from the 
measured per-phase voltage and current waveform data 
recorded by PNM at node A.   

 
 

Figure 6 Per unit voltage and frequency during the fault.  

The traces presented in Figure 6 show the voltage phasor 
magnitude and frequency as time varies.  Both the voltage 
magnitude and the frequency are passed through low pass filter 
to remove the higher frequency component, and the resulting 
voltage and frequency are used as the input to the GENCLS 
model.  Note, that during the fault, the voltage dips to about 
0.73 p.u. 

Figure 7 shows the measured real and reactive power. It can 
be seen that, prior to the disturbance, the wind power plant was 
operating at an output level of 115 MW, about 56% of rated 
output (ignoring losses). It can also be seen that the wind 
power plant output goes down by approximately 9%, after the 
disturbance.  Since wind speed can be assumed to be constant 
over the time frame of this event (a few seconds), this 
reduction is an indication that some turbines tripped as a result 
of the fault.  With respect to reactive power, it is noted that 
there is a significant response during the fault.   

 

IV.  SIMULATION  

A.  Wind power plant description and representation 
To account for the portion of the wind power plant that may 

have tripped as a result of the disturbance, two generators at 
node B were used to represent the equivalent generator, as 
shown in Figure 8.  This allows for tripping of part of the wind 
power plant during the simulation.  

In power flow, the output power of the equivalent 
generators was adjusted to match the total output power 
measured at the POI (i.e. 115 MW).  The equivalent 

generators are setup to control voltage at node C.  Node A is 
the slack bus, and the scheduled voltage is set to the measured 
pre-disturbance voltage (i.e., 1.0325 p.u.). The scheduled 
voltage at node C can be adjusted until the reactive flow 
matches the measured flow (i.e., -23 MVAR).  
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Figure 7.  Real and reactive power measured at the POI. 
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 Figure 8.   Wind power plant is represented by a two turbine representation. 



 

B.  Dynamic Simulation 
The reactive power control module of the WECC generic 

DFAG dynamic model (Fig. 9) has the capability that allows 
for simulation of reactive control modes.  As stated before, the 
wind power plant we are using as an example operates in 
voltage control mode; therefore, VARFLG is set to 1. Other 
control modes available are power factor control mode 
(VARFLG = -1), and reactive power control mode (VARFLG 
= 0),.   The vswitch VLTFLG is set to 1, indicating that the 
reactive power command is constrained by the WTG terminal 
voltage.  Note that a WECC generic model is required for each 
of the equivalent wind power plant generators represented at 
Node B.  As explained before, a GENCLS model was used for 
the system generator, with instructions to hold the voltage and 
frequency in accordance with the disturbance measurements.         

A 4 seconds dynamic simulation was conducted with the 
system setup explained above.  The smaller equivalent 
generator was taken off line during the fault to simulate the 
observed tripping. The timing at which these turbines trip off 
line is not recorded, thus, the tripping timing was estimated to 
be at t = 0.99 seconds.   

C.  Comparison of simulated response versus 
measurements  
Figures 10 and 11 compare the simulated real and reactive 

power response to the measured real and reactive power 
response at the node A. 

Overall, the simulation results follow the measured data 
closely, especially the reactive power.  The simulated response 
does not reproduce the observed higher-frequency 
perturbations during the fault; however, these details are of 
lesser importance in this type of simulation.  The generic 

dynamic models are not designed to be accurate at that level of 
detail. 

 
Figure 9. Type 3 WTG Reactive Power Control Model.  

We also simulated the wind power plant in detail, with all 
136 turbines and collector system branches.  The boundary 
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 Figure 10. Real power comparison.  

Reactive Power Comparison
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Figure 11.  Reactive power comparison.  
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conditions at the POI were the same as before.  The purpose of 
this exercise was to see the diverse terminal characteristics due 
to collector system effects resulted in any significant 
differences with respect to the simplified system 
representation.  The exercise also served to validate the 
collector system equivalent parameters.  The results of that 
simulation are shown in Figures 10 and 11.  Note that there 
were no significant differences in this particular disturbance." 

V.  CONCLUSIONS 
This paper presents the methods to validate positive-

sequence wind dynamic models. This technique was applied to 
the WECC generic model as an example. 

The validation method described in this paper is applicable 
for all the four types of wind turbine generators.   

The preliminary results of the simulations demonstrated that 
a generic model of DFIG generators provides an adequate 
representation of the actual wind turbines under fault 
conditions.  It is also shown that modeling the wind power 
plant with an equivalent representation preserves the basic 
response of the wind power plant.  . 
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